ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD (Department of Mathematics & Statistics)

WARNING

- 1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE.
- 2. SUBMITTING ASSIGNMENTS BORROWED OR STOLEN FROM OTHER(S) AS ONE'S OWN WILL BE PENALIZED AS DEFINED IN "AIOU PLAGIARISM POLICY".

Course: Discrete Mathematics (3406)

Level: BS (CS) Total Marks: 100 Semester: Autumn, 2013 Pass Marks: 40

ASSIGNMENT No. 1 (Units 1–4)

Note: Attempt all questions, all questions carry equal marks

Use symbols to write the logical form of the following arguments then use a Q.1 a) truth table to test the arguments for validity; (05)If Tom is not on team A, then Hua is on team B. If Hua is not on team B, then Tom is on team A. \therefore Tom is not on team A or Hua is not on team B. b) Construct circuit for the following Boolean expression (05) $(P \land Q) \lor \sim R$ Determine whether the statement "the product of any two even integers is a c) multiple of 4." Is true or false? If it is true then Prove it else give a counter example. (05)Show that $\sqrt{2}$ is an irrational number. d) (05)Q.2 a) Write a negation for the following statements; (05) \forall Sets *S*, \exists a set *T* such that $S \cap T = \emptyset$. Which is true the statement or i) its negation? Explain. ii) \exists a Set *S* such that \forall sets *T*, $S \cup T = \emptyset$. Which is true the statement or its negative? Explain Prove that for all sets A and B: (05)b)

 $A - (A \cap B) = A - B$

- c) A computer programming team has 14 numbers.
 - i) How many ways can a group of 7 are chosen to work on a project?
 - ii) Suppose 8 team members are women and 6 are men; how many groups of 7 can be chosen that contain 4 women and 3 men?

(05)

- d) Suppose that there are three roads from city A to city B and five roads from city B to city C; (05)
 - i) How many ways is it possible to travel from city A to city C via city B?
 - ii) How many different round trip routes are there from city A to B to C to B and back to A in which no road is traversed twice?
- Q.3 a) Prove modus tollens. In other words, prove that the following argument form is invalid: (05)

$$p \to q$$
$$\sim p$$
$$\therefore \sim q$$

- b) Write negation of the statement: (05) \forall animals x; if x is a cat then x has whiskers and x has claws.
- c) Use modus and tollens to fill in valid conclusion for the following argument; (05)
 All healthy people eat an apple a day. Harry does not eat an apple a day.
 ∴ _______.
- d) Indicate whether the following arguments are valid or invalid. Support your answer by drawing diagrams. (05)
 All people are mice.
 All mice are mortal.
 ∴ All people are mortal.
- Q.4 a) What can you conclude about the validity OR invalidity of the following argument form? (10)

$$\forall x, if P(x) then Q(x);$$

~ P(a) for a particular a
 $\therefore \sim Q(a)$

- b) Prove that for all positive integers a and b, a|b if, and only if, gcd(a, b) = a. (10)
- Q.5 a) Write an algorithm to determine whether a given element x belongs to a given set, which is represented as an array $a[1], a[2], a[3], \dots, a[n]$. (05)

- b) For all integers a, b and c, if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$. (05)
- c) Use the well-ordering principal to prove that if *a* and *b* are any integers not both zero, then there exist integers *u* and *v* such that gcd(u, v) = ua + vb. (05)
- d) Write a negation for the following statements; (05)
 - i) \forall Sets *S*, \exists a set *T* such that $S \cap T = \emptyset$. Which is the true statement or its negation? Explain.
 - ii) $\exists a \text{ Set } S \text{ such that } \forall \text{ sets } T, S \cup T = \emptyset$. Which is the true statement or its negation? Explain.

ASSIGNMENT No. 2 (Units 5–9)

Note: Attempt all questions, all questions carry equal marks

- Q.1 a) A small town has only 500 residents. Must there be 2 residents who have the same birthday? Why? Explain your answer. (10)
 - b) Draw arrow diagrams for the Boolean functions defined by the following input/output table; (10)

Input		Output
Р	Q	R
1	1	0
1	0	1
0	1	0
0	0	1

Q.2 a) Let a_0, a_1, a_2, \dots be the sequence defined recursively as follows $\forall K \in \mathbb{Z}$ (10)

$$a_K = a_{K-1} + 2 \qquad if \ K \ge 1$$
$$a_K = 1 \qquad if \ K = 0$$

 $u_K - 1$ ij K - 0Use Iteration to guess an explicit formula for the sequence.

- b) A runner targets herself to improve her time on a certain course by 3 seconds a day. If on day O she runs the course in 3 minutes, how fast must she run it on the 14^{th} day to stay on target? (10)
- Q.3 a) Refer to the following algorithm segment. For each positive integer n, let b_n be the number of iterations of the while loop; (10)

While
$$(n > 0)$$

 $n := n \operatorname{div} 3$
end while

Trace the action of this algorithm segment on n when the initial value of n is 424.

- b) Prove that if a walk in a graph contains a repeated edge, then the walk contains a repeated vertex. (10)
- Q.4 a) Suppose that there are three roads from city A to city B and five roads from city B to city C; (10)
 - i) How many ways is it possible to travel from city A to city C via city B?
 - ii) How many different round trip routes are there from city A to B to C to B and back to A in which no road is traversed twice?

b) A computer programming team has 14 members. (10)

- i) Suppose two team members refuse to work together on projects. How many groups of 7 can be chosen to work on a project?
- ii) How many ways can a group of 7 are chosen to work on a project?
- iii) Suppose 8 team members are women and 6 are men; how many groups of 7 can be chosen that contain 4 women and 3 men?
- Q.5 a) Draw all non-isomorphic graphs with four vertices and no more than two edges. (10)
 - b) Show that for any real number x, if x > 1 then $|2x^2 + 15x + 4| \le 21|x^2|$ and use O- notation to express the result?